Sunday, April 1, 2012

Mobile Telephony GSM & CDMA

Mobile Internet and telephony

A mobile or cell(ular) (tele)phone is a long-range, portable electronic device for personal telecommunications over long distances. Personal Access Communications System (PACS) is a type of wireless telephone network compatible with telephone sets, answering machines, fax machines, and computers. A PACS can be used like a local area network (LAN) with voice capability and can be part of a larger network or can be connected into the telephone system. A typical PACS resembles a cellular telephone … network in miniature. It contains numerous radio port control units (RCPUs), each of which is the equivalent of a cellular repeater, but with a shorter communications range, linking subscriber sets within a radius of a few hundred feet. RPCUs are located on utility poles, atop buildings, and in other unobtrusive places that offer good coverage for several hundred feet in all directions. RPCU transmitter power is limited to 800 milliwatts. The operating frequency is in the UHF (ultra-high-frequency) radio range at 1.9 GHz.
Most current mobile phones connect to a cellular network of base stations (cell sites), which is in turn interconnected to the public switched telephone network (PSTN) (the exception are satellite phones). Cellular networks were first introduced in the early to mid 1980s (the 1G generation). Prior mobile phones operating without a cellular network (the so-called 0G generation), such as Mobile Telephone Service, date back to 1945. Until the mid to late 1980s, most mobile phones were sufficiently large that they were permanently installed in vehicles as car phones. With the advance of miniaturization, currently the vast majority of mobile phones are handheld. In addition to the standard voice function of a telephone, a mobile phone can support many additional services such as SMS for text messaging, email, packet switching for access to the Internet, and MMS for sending and receiving photos and video.
The world's largest mobile phone manufacturers include Audiovox, BenQ-Siemens, High Tech Computer Corporation, Fujitsu, Kyocera, LG, Motorola, NEC, Nokia, Panasonic (Matsushita Electric), Pantech Curitel, Philips, Sagem, Samsung, Sanyo, Sharp, Siemens SK Teletech, Sony Ericsson, T&A Alcatel and Toshiba.The world's largest mobile phone operators include Orange SA, China Mobile and Vodafone.There are also specialist communication systems related to, but distinct from mobile phones, such as Professional Mobile Radio. Mobile phones are also distinct from cordless telephones, which generally operate only within a limited range of a specific base station. Technically, the term mobile phone includes such devices as satellite phones and pre-cellular mobile phones such as those operating via MTS which do not have a cellular network, whereas the related term cell(ular) phone does not. In practice, the two terms are used nearly interchangeably, with the preferred term varying by location.



Mobile Technology

Mobile phones and the network they operate under vary significantly from provider to provider, and even from nation to nation. However, all of them communicate through electromagnetic radio waves with a cell site base station, the antennas of which are usually mounted on a tower, pole, or building.
The phones have a low-power transceiver that transmits voice and data to the nearest cell sites, usually 5 to 8 miles (0.8 to 13 kilometres) away. When the cellular phone or data device is turned on, it registers with the mobile telephone exchange, or switch, with its unique identifiers, and will then be alerted by the mobile switch when there is an incoming telephone call. The handset constantly listens for the strongest signal being received from the surrounding base stations. As the user moves around the network, the mobile device will "handoff" to various cell sites during calls, or while waiting (idle) between calls it will reselect cell sites.
Cell sites have relatively low-power (often only one or two watts) radio transmitters which broadcast their presence and relay communications between the mobile handsets and the switch. The switch in turn connects the call to another subscriber of the same wireless service provider or to the public telephone network, which includes the networks of other wireless carriers.
The dialogue between the handset and the cell site is a stream of digital data that includes digitized audio (except for the first generation analog networks). The technology that achieves this depends on the system which the mobile phone operator has adopted. Some technologies include AMPS for analog, and TDMA, CDMA, GSM, GPRS, EV-DO, and UMTS for digital communications. Each network operator has a unique radio frequency band.
In cellular service there are two main competing network technologies: Global System for Mobile Communications (GSM) and Code Division Multiple Access (CDMA). Cellular carriers including Sprint PCS, Cingular Wireless, Verizon and T-Mobile use one or the other. Understanding the difference between GSM and CDMA will allow you to choose a carrier that uses the preferable network technology for your needs.
The GSM Association is an international organization founded in 1987, dedicated to providing, developing, and overseeing the worldwide wireless standard of GSM. CDMA, a proprietary standard designed by Qualcomm in the United States, has been the dominant network standard for North America and parts of Asia. However, GSM networks continue to make inroads in the United States, as CDMA networks make progress in other parts of the world. There are camps on both sides that firmly believe either GSM or CDMA architecture is superior to the other. That said, to the non-invested consumer who simply wants bottom line information to make a choice, the following considerations may be helpful.
Coverage: The most important factor is getting service in the areas you will be using your phone. Upon viewing competitors' coverage maps you may discover that only GSM or CDMA carriers offer cellular service in your area. If so, there is no decision to be made, but most people will find that they do have a choice.
Data Transfer Speed: With the advent of cellular phones doing double and triple duty as streaming video devices, podcast receivers and email devices, speed is important to those who use the phone for more than making calls. CDMA has been traditionally faster than GSM, though both technologies continue to rapidly leapfrog along this path. Both boast "3G" standards, or 3rd generation technologies.
EVDO, also known as CDMA2000, is CDMA's answer to the need for speed with a downstream rate of about 2 megabits per second, though some reports suggest real world speeds are closer to 300-700 kilobits per second (kbps). This is comparable to basic DSL. As of fall 2005, EVDO is in the process of being deployed. It is not available everywhere and requires a phone that is CDMA2000 ready.
GSM's answer is EDGE (Enhanced Data Rates for GSM Evolution), which boasts data rates of up to 384 kbps with real world speeds reported closer to 70-140 kbps. With added technologies still in the works that include UMTS (Universal Mobile Telephone Standard) and HSDPA (High Speed Downlink Packet Access), speeds reportedly increase to about 275—380 kbps. This technology is also known as W-CDMA, but is incompatible with CDMA networks. An EDGE-ready phone is required.
In the case of EVDO, theoretical high traffic can degrade speed and performance, while the EDGE network is more susceptible to interference. Both require being within close range of a cell to get the best speeds, while performance decreases with distance.
Subscriber Identity Module (SIM) cards: In most of the countries only GSM phones use SIM cards. The removable SIM card allows phones to be instantly activated, interchanged, swapped out and upgraded, all without carrier intervention. The SIM itself is tied to the network, rather than the actual phone. Phones that are card-enabled can be used with any GSM carrier.
The CDMA equivalent, a R-UIM card, is only available in parts of Asia but remains on the horizon for the U.S. market. CDMA carriers in the U.S. require proprietary handsets that are linked to one carrier only and are not card-enabled. To upgrade a CDMA phone, the carrier must deactivate the old phone then activate the new one. The old phone becomes useless.
Roaming: For the most part, both networks have fairly concentrated coverage in major cities and along major highways. GSM carriers, however, have roaming contracts with other GSM carriers, allowing wider coverage of more rural areas, generally speaking, often without roaming charges to the customer. CDMA networks may not cover rural areas as well as GSM carriers, and though they may contract with GSM cells for roaming in more rural areas, the charge to the customer will generally be significantly higher.
International Roaming: If you need to make calls to other countries, a GSM carrier can offer international roaming, as GSM networks dominate the world market. If you travel to other countries you can even use your GSM cell phone abroad, providing it is a quad-band phone (850/900/1800/1900 MHz). By purchasing a SIM card with minutes and a local number in the country you are visiting, you can make calls against the card to save yourself international roaming charges from your carrier back home. CDMA phones that are not card-enabled do not have this capability.
According, CDMA networks support over 270 million subscribers worldwide, while tallies up their score at over 1 billion. As CDMA phones become R-UIM enabled and roaming contracts between networks improve, integration of the standards might eventually make differences all but transparent to the consumer.
The chief GSM carriers in the United States are Cingular Wireless, recently merged with AT&T Wireless, and T-Mobile USA. Major CDMA carriers are Sprint PCS, Verizon and Virgin Mobile.

No comments:

Post a Comment